
UCRL-JC-133191 
PREPRINT 

Evolutionary Software for Autonomous 
Path Planning 

M. Hage 
S. Couture 

This paper was prepared for submittal to the 
Eighth International Topical Meeting on Robotics and Remote Systems 

Pittsburgh, PA 
April 25-29, 1999 

February lo,1999 

This is a preprint of a paper intended for publication in a journal or proceedings. 
Since changes may be made before publication, this preprint is made available with 
the understanding that it will not be cited or reproduced without the permission of the 
author. 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising 
or product endorsement purposes. 



EVOLUTIONARY SOFTWARE FOR AUTONOMOUS PATH 
PLANNING 

Matthew Hage (Lawrence Livermore National Laboratory) 
Scott Couture (Lawrence Livermore National Laboratory) 

California Institute of Technology, MSC 235, Pasadena, CA 91126 
hage@its.caltech.edu 

Abstract 

This research project demonstrated the effectiveness of using evolutionary software techniques in the 
development of path-planning algorithms and control programs for mobile vehicles in radioactive 
environments. The goal was to take maximum advantage of the programmer’s intelligence by tasking the 
programmer with encoding the measures of success for a path-planning algorithm, rather than 
developing the path-planning algorithms themselves. Evolutionary software development techniques 
could then be used to develop algorithms most suitable to the particular environments of interest. The 
measures of path-planning success were encoded in the form of a fitness function for an evolutionary 
software development engine. The task for the evolutionary software development engine was to 
evaluate the performance of individual algorithms, select the best performers for the population based on 
the fitness function, and breed them to evolve the next generation of algorithms. The process continued 
for a set number of generations or until the algorithm converged to an optimal solution. The task 
environment was the navigation of a rover from an initial location to a goal, then to a processing point, 
in an environment containing physical and radioactive obstacles. Genetic algorithms were developed for 
a variety of environmental configurations. Algorithms were simple and non-robust strings of behaviors, 
but they could be evolved to be nearly optimal for a given environment. In addition, a genetic program 
was evolved in the form of a control algorithm that operates at every motion of the robot. Programs were 
more complex than algorithms and less optimal in a given environment. However, after training in a 
variety of different environments, they were more robust and could perform acceptably in environments 
they were not trained in. This paper describes the evolutionary software development engine and the 
performance of algorithms and programs evolved by it for the chosen task. 

Introduction: 

Evolutionary software has been used for path planning previously [3]. The problem being evaluated here 
differs in that the algorithm is to guide a robot to the core of a melted nuclear reactor, such as at 
Chernobyl, retrieve a piece of that core, and return it to processing site, avoiding physical obstacles and 
prolonged exposure to radiation. Our research used evolutionary software for path planning in known 
and unknown environments. Genetic algorithms were evolved for path planning in known environments, 
as an alternative to methods such as potential fields. Evolved algorithms demonstrated an ability to avoid 
the physical obstacles as well as to minimize the distance and time spent around radiation sources. 
Genetic programs were evolved in the form of sensor-based path-planning control programs. Genetic 
programs were evolved on a variety of known environments to develop a control program for the given 
task. Once this control program is evolved, it may be used for autonomous path planning in an unknown 
environment, as an alternative to such methods as Lumelsky’s bug[5] or the A* algorithm[6]. 

Hage- 1 1 



Evolutionary software may be able to perform path planning more optimally than alternative path- 
planning algorithms. A genetic algorithm will test several different possible paths through a known 
environment, continuously attempting to maximize the fitness of the path through this environment. 
Genetic programs may be more optimal than traditional sensor-based path-planning algorithms, as 
genetic programs can be trained in an increasing number of known environments. Evolutionary software 
may exploit opportunities that traditional algorithms are unable to examine. 

A genetic algorithm is used to determine a path through an environment known a priori composed of 
goal (reactor core), processing point, physical obstacles, and radiation obstacles. A genetic program is 
used to create a control program that again guides the robot through the environment, using sensory 
input compared to constants. This more robust controller may be capable of performing the specified 
tasks in unknown environments. The implementation of the genetic program was based on the work of 
Koza [l]. 

Objective: 

The objective of the evolutionary software was to obtain an algorithm that planned the path of a mobile 
rover in an environment containing physical and radioactive obstacles. The goal of the algorithm was to 
have the rover begin at an initial starting position, move to a goal to retrieve some radioactive material, 
then take that material to a pre-determined dumping site where the material could be processed. While 
executing these tasks, the robot was to avoid any physical obstacles as well as avoid prolonged exposure 
to radiation sources. Several approaches were taken to solve this problem. 

The simplest approach to this problem was to use a genetic algorithm that assumed that the environment 
would be known a priori, and that the algorithm would need to navigate through only one environment. 
In this case, the algorithm was not fed any sensory information and developed in response to physical 
interactions with its environment. 

A more complex genetic program approach was pursued in an attempt to develop a robust control 
algorithm that would operate at every step in the path, acting based on comparisons between sensory 
input and randomly chosen values. The genetic program was trained over several different environments 
in order to make a more robust algorithm. The objective of the genetic program was to create a control 
program capable of sensor-based path-planning through a variety of environments containing physical 
and radioactive obstacles. 

Environment: 

The training environment was a Cartesian coordinate space, containing an initial position of the robot, a 
goal, a processing point, and physical as well as radioactive obstacles. The physical obstacles were 
defined, stationary points in the Cartesian coordinate system. The physical obstacles were impenetrable, 
so that a robot would bounce off an obstacle were it to attempt to move into the Cartesian coordinate of 
that obstacle. Each time a robot hit an obstacle, it was “hurt” by an amount specified by the user. The 
radiation obstacles were also defined and stationary, but were not impenetrable. The robot was “hurt” by 
each radiation source depending on a K/r2 relationship, with the constant, K, set by the user to represent 
the strength of each radiation obstacle. If the robot attempted to move to the coordinates of the radiation 
source, the robot was “hurt” quite badly, but was allowed to pass through that point. This was to 

Hage- 1 2 



simulate radiation sources that may be either too small to be physical obstacles or not directly in the 
environment, possibly being on another level of the reactor. 

Evolutionary Software Development System: 

An evolutionary software development system (engine) was developed to solve the given path-planning 
problem. The evolutionary software development engine begins by generating an initial population of 
individuals. The initial population is generated by randomly choosing the number of operations that 
make up each member of the population, then randomly selecting the function to be carried out during 
each operation of each member of the population. The initial population algorithms are then executed to 
evaluate the fitness of the algorithms. The population is then ranked based on the score assigned to each 
algorithm by the fitness function. Then, the population is bred. The breeding program preserves the best 
10% from each generation into the next generation. The remaining 90% of the next generation are 
formed by sexual recombination of the top 50% of the prior (existing) generation. Then, the new 
generation is evaluated, ranked and bred. The process continues until the maximum number of 
generations is achieved. 

The evolutionary software engine is generic in nature. In order to evolve a new algorithm for a specific 
situation or environment, it is provided: 

information describing the training environment including the starting point, core location, etc.; 
a set of elemental functions that could be combined to form an algorithm or program; 
a fitness function; and, 
parameters describing the maximum length of an individual, number of individuals in a 

generation and the maximum number of generations to evaluate. 

When building simple algorithms, the only functions provided are the motion operations: move up, 
move down, move left, and move right. When developing more complex genetic programs, the 
operations stay, move back, move forward, and move-to-goal are added. In addition, in order to create a 
sensor-based path-planning algorithm, sensing functions are provided to generate the distance and 
direction of the nearest obstacle and the direction and strength of the largest radiation source. 

The fitness function evaluates the performance of each algorithm in the population. The fitness function 
scores each algorithm based on how well it performs the given tasks in the example environment, with a 
lower score corresponding to a better performance. Points are added to each member’s score for hitting 
physical obstacles, for distance from radiation obstacles, for each step taken, and for finishing either 
away from the goal, or, if the goal has already been reached, for the distance away from the processing 
point. Points are deducted from each member’s score for reaching the goal, and reaching the processing 
point after reaching the goal. The counter that incremented for each step taken is allowed to end 
whenever the robot reaches the processing point after reaching the goal, or at a number of steps specified 
by the user. In this manner, the algorithms that slowly reach the processing point are not ranked as highly 
as those that quickly move around the environment. This feature is included to simulate real cumulative 
overall radiation as well as the reality of limited amounts of power available to an autonomous rover. 

Hage- 1 



Implementation: 

The evolutionary software is implemented by numerically encoding the motion operations and the 
sensory information available to the genetic program as shown in Figure 1. For the genetic algorithm, 
each member of the population is an array of motion numbers. These numbers (motions) are executed 
sequentially until the counter reaches its maximum value or until the robot reaches the processing point 
after reaching the goal. If the end of the array is reached before either of these two events occurs, the 
genetic algorithm loops around to the beginning of the array. The fitness of each individual is evaluated 
and the population is ranked. The breeding program randomly selects pairs (couples) of individuals 
ranked in the top one half of the population. Each member of a couple is then subdivided into two parts 
at a randomly selected point in their array. The four parts around these random points are then 
recombined to form the two children of each couple. The first part of the first parent is matched 
with the second part of the second parent for the first child, and the second child consists of the first part 
of the second parent and the second part of the first parent. These new members of the new population 
are then evaluated in the fitness test, ranked, and then returned to the breeding program. 

I= Move right 
2= Move left 
3= Move up 
4= Move down 

The process 
repeats with the 

Elemental functions 
combine to form 133141132 

individuals (move right, up, up, right, down 

L right, right, up, left) 

I 

next generation 

parents 

1331141 132 4231143221 

performers 
are selected 
for breeding 

1331143221 42341132 0 I 2 3 4 5 
offspring 

Figure 1. Genetic algorithms are implemented using series of integers representing behaviors 

The more complex implementation of the genetic program requires more complex member algorithms as 
well as a more complex breeding algorithm. The genetic program creates decision tree algorithms that 
are parsed through at each Cartesian coordinate reached by the algorithm. Individual genetic programs 
are represented by parse trees of numbers representing motions or comparisons of sensory data to 
constants, as shown in Figure 2. Comparisons utilize the if less than or equal to statement to compare 
sensory input to constant values. Depending upon the result, either moves or additional comparison 
statements may be executed. Each individual in each generation is a parse tree represented by a three 
dimensional array. These arrays are depth of the parse tree, width of the parse tree, and operations at 
each node in the parse tree. Each node consists of four statements: a 0,l trigger to tell if this node is a 
motion or a comparative statement, a motion number, a sensor number, and a constant value number. 

Hage- 1 4 



When a given algorithm created by the genetic program is being evaluated by the fitness function, the 
algorithm is enacted as the member passed through each Cartesian point. At each of these points, the 
algorithm begins executing at the top node and proceeds through a parse tree. The algorithm operates at 
each node based on the binary trigger. If the trigger indicates a move, then the motion of that given node 
is executed, the algorithm moves to the Cartesian point indicated, and the algorithm is started over at the 
new Cartesian coordinate. If the node indicates a comparison, the value returned from the sensor 
indicated in the node is compared to the constant value indicated in the node. The algorithm then 
proceeds to either of two nodes, based on the outcome of the if less than or equal to comparison between 
these two values. 

I= Move right 8= Move to goal 
2= Move left 9-l 6= Sensory 
3= Move up information 
4= Move down 17-31= Sensor 
5= Still threshold 
6= Move forward constants 
7= Move back 

The process 
repeats with the 
next generation 

parent 1 
a /\ 

b A’ 
d e 

offspring 1 

/“\ 
b 

/“\ 

d F\ 
F G 

Elemental 
functions 

combine to 
form nodes 

parent : 

/A>\’ 

A A 
D EF G 

offspring : 

/“\ 

A e 
D E 

0= Comparison 6= Move Forward 
(ignored during comparisons) 

9= Distance t 
Nearest object 26=(code for) 2 

Node means: 
“If Distance <2 branch right, 

Otherwise. branch left” 

Best 
performers 

are selected 
for breeding 

Nodes are combined 
to make form parse 

tree individuals 

06920 
/\ 

13 14 19 08 1225 
/\ 

181326 1411 17 
Individuals are parse trees that 

‘epresent programs that execute 
at every step 

Figure 2. Genetic programs are implemented as node trees representing decisions and actions 

Breeding of genetic programs is accomplished by exchanging portions of the parse trees that define 
individuals (genetic programs) created by the evolutionary software. Essentially, the breeding program 
operates by swapping branches of the parse trees between two different members. Two parents are 
chosen randomly from the top half of the population. A random node is chosen in each of the parents, at 

Hage- 1 5 



which the parse tree of the parent is cut. This forms two smaller parse trees segments from each parent 
tree. The children are formed by recombining tree segments from the parents in a manner similar to that 
of the genetic algorithm. The first child consists of the tree segment from above the cut on the first 
parent, spliced to the tree segment from below the cut on the second parent. The second child consists of 
the top tree of the second parent and the bottom tree of the first parent. 

Results: 

Evolutionary software was able to solve the problems presented here. 

Evolutionary software was able to develop an algorithm that executes a path through a relatively simple 
environment in a few generations (optimal after approximately 250 generations) with a small population 
(1000 individuals). The results are shown in Figure 3. Genetic algorithms encoding plans through much 
more complicated environments were developed given a larger population and more generations over 
which to evolve. 

The evolutionary software development system required an even larger population (2000 individuals) 
and many generations (50) to create a genetic control program to solve a single environment. In order to 
solve several environments simultaneously, a population of 1000 was used over 100 generations. 
However, after “training” on 3 different environments, the genetic software was able to create a control 
program that was capable of performing the given tasks in all of the environments. It was then tested on 
a fourth and fifth environment that were not known a priori and performed acceptably in one of them 
and marginally in the other. Results in the training environments and a four (unknown) environment are 
shown in Figure 4. It is clear that in order to develop a robust genetic program that operates in a wide 
variety of environments that are not known a priori, the set of training environments needs to be 
sufficiently rich to encompass a wide variety of possible scenarios. 

Hage- 1 6 



Genetic Algorithm - Generation 0, Score=5457,99 Steps Genetic Algorithm - Generation 10, Score=2914,99 Steps 

Genetic Algorithm - Generation 100, Score=-1 08388,67 Steps Genetic Algorithm - Generation 1000, Score=-109133,35 Steps 

8 

, 

6 

0 2 4 6 8 10 12 

Figure 3. Comparison of genetic algorithm performance as algorithm is evolved over 1000 generations 

Hage- 1 7 



Genetic Program - Multiple Terrains 

a 

6 

Genetic Program - Multiple Terrains 

Genetic Program - Multiple Terrains 

Genetic Program - Unknown Terrain 

a 

i 7 

6 

0 

0 2 4 6 a 
destination 

10 12 

Figure 4. Genetic program evolved over multiple terrains 

Hage- 1 

performed acceptably on some unknown terrains 

8 



Future Work and Discussion: 

Evolutionary software was able to perform autonomous path planning. Genetic algorithms were capable 
of path planning through an environment known a priori. Genetic programs were capable of creating 
sensor-based path-planning control programs that were trained on several environments and then 
successfully tested on an environment not previously encountered. Evolutionary software may be an 
additional tool for use in the field of path planning, through both known and unknown environments. 

Future work will include increasing the complexity of the simulated environment in order to ascertain 
the viability of the evolutionary software in increasingly complex environments. The genetic algorithm 
described appears to be a capable path-planning algorithm through an environment known a priori, and 
further work will include utilizing genetic algorithms to solve path-planning problems. 

Sensor-based path planning with evolutionary software is more complex. The genetic program described 
was trained over several environments and then utilized successfully in an unknown environment. Future 
work will include training the genetic program in more environments and more complex environments. 
The genetic program may also be allowed to include more sensory information, such as the history of the 
path taken up to the current point, the amount of steps already taken, or possibly even be allowed to 
create a roadmap of terrain already encountered. 

References: 

[II 

PI 

[31 

[41 

[51 

WI 

Koza, J. (1992), Genetic ProgrammingZ, The MIT Press 

‘Genetic Programming: Papers from the 1995 AAAI Fall Symposium 
Technical Report, FS-95-01 

Haupt, R.; Haupt, S. (1998), Practical Genetic Algorithms, John Wiley & Sons 

Goldberg, D. (1989), Genetic Algorithms in Search, Optimization, and Machine 
Learning, Addison Wesley Pub. 

Lumelsky, V.J. and Stepanov, A.A. (1986), Dynamic Path Planning for a mobile 
automaton with limited information on the environment, 
IEEE transactions of Automatic control, pages 1058-1063 

Pearl, J. (1984), Heuristics: Intelligent Search Strategies for Computer Problem 
Solving., Addison Wesley Pub. 

This work was performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 

Hage- 1 


